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Transferring Structured Knowledge in
Unsupervised Domain Adaptation

of a Sleep Staging Network
Chaehwa Yoo , Hyang Woon Lee , and Je-Won Kang , Member, IEEE

Abstract—Automatic sleep staging based on deep learn-
ing (DL) has been attracting attention for analyzing sleep
quality and determining treatment effects. It is challenging
to acquire long-term sleep data from numerous subjects
and manually labeling them even though most DL-based
models are trained using large-scale sleep data to pro-
vide state-of-the-art performance. One way to overcome
this data shortage is to create a pre-trained network with
an existing large-scale dataset (source domain) that is
applicable to small cohorts of datasets (target domain);
however, discrepancies in data distribution between the
domains prevent successful refinement of this approach. In
this paper, we propose an unsupervised domain adaptation
method for sleep staging networks to reduce discrepan-
cies by re-aligning the domains in the same space and
producing domain-invariant features. Specifically, in addi-
tion to a classical domain discriminator, we introduce local
discriminators - subject and stage - to maintain the intrinsic
structure of sleep data to decrease local misalignments
while using adversarial learning to play a minimax game
between the feature extractor and discriminators. Moreover,
we present several optimization schemes during training
because the conventional adversarial learning is not effec-
tive to our training scheme. We evaluate the performance
of the proposed method by examining the staging perfor-
mances of a baseline network compared with direct trans-
fer (DT) learning in various conditions. The experimental
results demonstrate that the proposed domain adaptation
significantly improves the performance though it needs no
labeled sleep data in target domain.

Index Terms—Sleep staging, unsupervised domain
adaptation, local alignment, knowledge transfer.
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I. INTRODUCTION

S LEEP staging refers to the identification of the current stage
of sleep using biometric signals [1]. Because sleep staging

can help explain sleep disorders to provide effective treatments,
researchers have developed accurate sleep scoring methods [2],
[3]. Sleep has a basic structural organization, with five unique
stages, including “wake,” “rapid eye movement (REM),” and
“non-rapid eye movement (NREM)”; NREM is generally sep-
arated into three stages as NREM 1 (N1), NREM 2 (N2), and
NREM 3 (N3) [2]. Sleep experts manually evaluate sleep stages
in compliance with standard guidelines, traditionally based on
polysomnography (PSG) data, to obtain the ground truth [4],
[5]. PSG is a comprehensive test to diagnose sleep disorders
or to evaluate treatment effects by monitoring various biometric
signals, such as electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG) [6], which can be used to
categorize sleep samples into one of the five stages as mentioned
above.

Unfortunately, manual evaluations are expensive and vulner-
able to human errors [3], [7]–[9]. Sleep experts examine 30 s
segments of data called epochs and repeat the examinations for
the entire sleep cycle [3], [7]–[9]. Even experienced experts can
evaluate data with only 90 percent accuracy owing to heavy
workloads. Therefore, automated sleep staging has gained sub-
stantial interest [2], [3]. Early studies used handcrafted features
to reflect the physical significance of biometric signals; these
works have also attempted to use classical machine learning
methods to classify sleep stages. Recent advances in artificial
intelligence have led to deep learning (DL)-based sleep staging
studies [9]–[22]. Convolutional neural networks (CNNs) are
used to extract sleep features, and recurrent neural networks
(RNNs) are used to extract features by analyzing the relation-
ships among adjacent epochs [10], [11], [17], [20]–[22].

Developments in recent DL models for sleep staging have
been facilitated by large-scaled open-access sleep datasets, such
as MASS dataset [23]. The most straightforward model training
approach is to pre-train a model with a large-scale dataset and
enable its application via finetuning with small-scale datasets,
developed for investigating specific sleep disorders or exploring
the feasibilities of new monitoring devices [12], [24], [25].
However, this refinement cannot provide reliable performance
because the training and testing samples are not drawn from
the same probability distribution. Even the large-scale dataset is
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not guaranteed to contain enough sleep samples from various
subjects because the biomedical data are almost impossible
to disclose. Further, the recording conditions are significantly
different from one device to another. While EEG signals are
recorded during PSG tests using accurate equipment, consumer-
level wearable devices may be prone to undesirable noise under
local test conditions.

In this paper, we propose an efficient training method for
domain adaptation (DA) for sleep staging, thereby helping a
model maintain its performance when testing with samples
from a different dataset. The approach attempts to alleviate
the undesired effects of domain discrepancies. However, in
practical scenarios, whereas both sleep data and ground truth
labels are available for training in source domain, it is difficult
to obtain labeled sleep data in target domain to which a model
would be deployed. To challenge this problem, we consider
an unsupervised DA setting, inspired by [26], where both the
source and target data are available for training but only the
source is labeled. Specifically, a large-scale sleep dataset in
source aids training of small-scale unlabeled sleep data in target
by transferring knowledge from the source. This consideration
is more consistent with realistic and practical circumstances,
which significantly differs from the supervised DA settings in
previous works [27]–[29].

Our DL model is trained using adversarial learning, in which
a feature extractor and a discriminator compete with each other,
to deceive a domain boundary and overcome the discrepancies
between the domains, as in [26]. We attempt to transfer the
knowledge from a source containing an organized structure of
sleep data instead of adopting a straightforward adversarial train-
ing method. Specifically, we use not only a domain discriminator
to identify the domain of the input samples but also other key
discriminators to reflect the intrinsic relationships between the
source and target sleep data. This training strategy helps maintain
the internal and local structures of both domain distributions
and provides more reliable results from among various datasets
and acquisition environments. Our model is optimized using
several training schemes to improve sleep staging performance
and produce domain-invariant features simultaneously. The pro-
posed approach can address the time and labor involved in sleep
data acquisition and have great impact on sleep monitoring and
analyses. We highlight main contributions as follows:

� We propose an efficient unsupervised DA training strategy
for sleep staging networks to overcome domain discrep-
ancies between source domain and target domain in more
realistic circumstances and produce domain-invariant fea-
tures, by introducing local discriminators to maintain the
intrinsic structure of sleep data.

� We present several optimization schemes used for stage-
wise and subject-wise discriminators as local discrimina-
tors to achieve both the global and local DA during training
and improve classification performance.

� We conduct comprehensive experiments to display
improved performance by the proposed method in various
DL models, datasets, PSG montages, and configurations,
while there are few DA studies for sleep data. The
proposed method provides significantly improved

performance although it uses unlabeled sleep samples in
target domain.

II. RELATED WORKS

A. Sleep Staging Analysis

DL has been actively applied to the analyses of sleep data us-
ing different architectures, such as autoencoder [13], deep neural
networks (DNNs) [14], CNNs [9], [15], and RNNs [16]. Differ-
ent types of input signals such as spectrogram [11], EOG [12],
ECG [17], and photoplethysmogram (PPG) [18] signals are used
in addition to an EEG signal. Current DL-based sleep staging
networks are generally composed of two parts: feature extrac-
tion and sequence signal classification. DeepSleepNet [10] was
proposed as a network architecture to use CNNs to extract both
temporal and spatial features from an epoch, and long short-term
memory (LSTM) was subsequently applied to learn the temporal
relations between adjacent epochs.

Various DL methods have been proposed to combine hand-
crafted features as complements. Sun et al. [19] and Dong
et al. [14] proposed to use hierarchical features of handcrafted
features and learned features from time series of epochs for
optimizing classification performance. Qu et al. [20] proposed
a multi-scale deep architecture by decomposing an EEG signal
into different frequency bands at the input; they also utilized
the multi-head self-attention module of the transformer model
to model the global temporal context.

There are several works on enhancing performance by ex-
ploiting sequential learning instead of one or few epochs. Phan
et al. [21] used contextual outputs of neighboring epochs to help
decide the current sleep staging. SeqSleepNet [11] considered
a sequence of several epochs for an input and classified all
the labels simultaneously; two different RNNs were employed
to learn the short-term and long-term features of sequential
epochs in different time windows. Seo et al. [22] introduced the
intra- and inter-epoch temporal context network using sub-epoch
features.

B. Domain Adaptation

DA was developed to mitigate problems when the probability
distribution of the source was substantially different from that of
the target. Depending on the degree of labeled data in the target
domain, the approach is categorized as supervised [30], semi-
supervised [31], or unsupervised DA [32]. One popular approach
is to train the deep features using an adversarial loss to confuse
a domain classifier and produce domain-invariant features [26],
[33]. Several studies have considered conditional probability
distributions in addition to marginal distributions. Specifically,
a multi-adversarial domain adaptation (MADA) [34] used an
adversarial learning module for an individual class to improve
performance with the target. In [32], a pseudo-label was en-
dorsed for an unlabeled sample in the target and jointly trained
with a real label in the source. These methods have attempted
to align the discrepancies both in the domain-level distribu-
tions as global adaptation and category-level distributions as
local adaptation. Such alignments were individually carried out.
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Fig. 1. The training framework using the proposed domain adaptation. In the training, a feature extractor is trained to produce domain-invariant
features by transferring knowledge from source to target. The network achieves the goal via a minimax game between the feature extractor and
discriminators without labeled samples in the target domain. In the inference, the sleep stage of an input sample in a target domain is predicted
using the knowledge transferred from the source domain.

However, the training scheme was suboptimal since the global
and local domain-shifts were not often made in the same di-
rections. In [35], the GSDA was applied to align the local and
global distributions consistently by synchronizing training.

There has been increasing interest in developing learning
schemes for biomedical data to overcome the limited quality
and quantity of the training samples [36], [37]. Gu et al. [36]
adopted adversarial learning to perform an attribute-invariant
translation and improve the performance for skin disease recog-
nition. Zhang et al. [37] proposed an unsupervised cross-subject
adaptation method to predict the locomotion intent of an un-
labeled target subject. For sleep staging, several works have
attempted to train personalized DL models [8]. Subjects with
sleep disorders [38] or within certain age ranges [13], [15] have
been considered for personalization. However, these approaches
need to consider more labeled data and acquisition conditions
in the target. To overcome these problems, Phan et al. [27]
proposed deep transfer learning to address data-variability and
data-inefficiency issues. Jaoude et al. [28] also used a similar
transfer learning approach with long-term scalp EEG recordings.
Banluesombatkul et al. [29] proposed a transfer learning frame-
work based on model agnostic meta-learning (MAML). Nasiri
et al. [39] proposed an adversarial training based method along
with attention mechanisms to pay attention to more relevant
input channels.

The approach presented here is developed under the con-
sideration of a totally unsupervised setting while resolving the
same issues to alleviate performance drop in the target compared
with previous studies. Our method does not need a finetuning

phase as it uses both source and target samples simultaneously
during training. Further, several effective optimizations fitted
to local attributes of sleep data are developed to improve the
performance.

III. METHODOLOGIES

A. Proposed Domain Adaptation in Sleep Staging

We present a training method for a domain-invariant sleep
staging network to provide more reliable features both in
the source and target. The proposed method aims to enhance
the performance in the target despite lacking labels. XS and
XT denote sleep datasets in the source and target contain-
ing n and m samples, respectively. It is noted that a source
sample xs

i ∈ XS = {(xs
i , y

s
i , z

s
i )}ni=1 has a label ysi ∈ CS =

{W, N1, N2, N3, REM}. zsi ∈ ZS = {S1, S2, . . . , Sb} is an in-
dicator of a subject or a group of subjects in XS to specify the
subjects xs

i during training. Such labels have not been used in
previous works [27]–[29], [39]. There are mtr training samples
and mte testing samples in XT . The target sample xt

j ∈ XT is
not annotated in our approach.

A network trained using only the source samples is not
generally applicable to a target owing to the lack of labels
even though n is greater than m. Therefore, the knowledge
from the source such as ys and zs is transferred to improve the
performance in the target using adversarial learning to deceive
the domain boundary between the domains. Fig. 1 illustrates the
overall training framework of the proposed domain adaptation;
it includes a feature extractor E , a set of discriminators D, and
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a stage classifier C. In our method, D = {Ddom,Dstg,Dsub} is
developed to facilitate the knowledge transfer using the intrinsic
structures of sleep data instead of employing the conventional
adversarial learning.Ddom is used for global adaptation to create
a co-feature space between two domains. Dstg and Dsub are
a stage-discriminator and a subject-discriminator. We further
use Dstg and Dsub for local adaptation to reflect the internal
structures of the sleep data whereas only the Ddom was used in
previous works [26], [33]. We explain more details on this in
Section III-B.

1) Overall Transfer Learning Scheme: Our network is
trained to transfer source knowledge and produce domain-
invariant features via a minmax game between E and D given
a random input sample. The training phase is composed of a
forward and a backward pass to train the network as shown in
Fig. 1. In the forward pass, a training sample is inputted to E to
extract a feature when the sample is attached to a binary domain
index d to indicate its origin. Given a feature, C calculates the
prediction of the current stage ypred. Then, the staging loss Lc

is computed using a cross-entropy function as in [31].
D outputs a set of domain prediction {ddom, dstg, dsub} at

the same time in the forward pass. The discrimination loss is
defined as the sum of the losses described below:

Ld = Ldom + Lstg + Lsub, (1)

where Ldom is a global discrimination loss that is calculated
from the cross-entropy loss function. It measures the difference
between d and ddom.Lstg andLsub are similarly computed to fix
possible local misalignments left from using only Ldom. More
details about the loss functions are given in Section IV.

In the backward pass, the network is updated to minimize the
classification loss as below:

min
C,E

Lc, (2)

where the network attempts to conduct the adaptation through
a minimax game on the discrimination loss between D and E .
The optimization procedure is given as below:

min
D

max
E

Ld. (3)

Specifically, C is updated first to minimize Lc by computing a
gradient by conventional backpropagation. D is also updated
to minimize Ld. Then, the gradient ∂Ld

∂D is reversed for ad-
versarial learning for E [26], [33]. Then, the gradients from C
and D interflow for E . Therefore, E is updated by minimizing
Lc and maximizing Ld simultaneously. While a classification
loss decreases and a discrimination loss increases through the
adversarial learning, the knowledge is transferred in a way that
D is deceived in the aligned feature space and E produces a
domain-invariant feature.

More thorough explanations about the optimization and the
loss functions will be given in Section IV.

2) Inference: The workflow differs for the training and test
phases. In the inference phase, a sample in {xt

j}mte
j=1 from the

target is tested to produce a predicted probability of the current

Fig. 2. Local misalignments of sleep data.

sleep stage as follows:

ŷpred = C(E(xt
j)).

B. Discriminators for Domain Alignments

The proposed method attempts to improve sleep staging
performance in the target. This objective is accomplished by
exploiting both the global and local alignments in the proposed
method. Global adaptation plays a role in training a domain-
adapted model across different datasets and has been actively
used in previous works [26], [30], [33]. However, local adap-
tation has been overlooked thus far although the models fail to
decide upon accurate classification boundaries. In the proposed
method, we define a common structure of the sleep data to
consider local alignments across two domains. Specifically, we
develop a stage discriminator and a subject discriminator. These
discriminators support preservation of the inherent structure
of a sleep sample and improve performance after DA. Fig. 2
illustrates the distribution of sleep data and importance of local
attributions. Although the global distribution is aligned, local
distributions are still misaligned as in the image.

Subject-wise alignment is considered when the distribution
of a sleep sample varies from person to person. It includes an
existence of a sleep disorder, an age, and behavioral or physi-
ological conditions [40], [41]. For instance, the sensitivity of a
monitoring device can be different between a PSG in a hospital
and a wearable device. In our experiments, we differentiate the
characteristics of the source and target with different acquisition
and environmental conditions, e.g., MASS dataset [23] as source
and Sleep-EDF [42], [43] as target. In addition, we use sleep data
samples from normal subjects as the source but some data from
patients with sleep difficulty as the target, e.g., MASS dataset
as source and Sleep-EDF-st dataset [42], [43] as target.

On the other hand, stage-wise alignment considers the inher-
ent characteristics of sleep signals. For example, brain neural
activity during REM sleep is comparable to when awake [24],
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Fig. 3. Implementation of a network architecture.

so the distribution at the REM stage is close to that at the wake
stage. Taking Fig. 2 as an example, the “W” stage of subjects
1, 3, and 4 can be aligned to the REM space. The stage-wise
alignment can also reflect external factors, such as an electrical
noise.

We provide more explanation about the discriminators.Ddom,
which is a global domain discriminator, determines if a feature
fi is extracted from the source or target. The discriminator aims
to provide domain-invariant representation across XS and XT .
Dstg is a stage discriminator to resolve discrepancies between
the same stage in the other domain. Specifically, the kth stage
of a source domain is aligned to the same stage of a target
domain using Dstg

k , k ∈ CS . Dsub
l is a subject discriminator

for the lth subject and is designated for achieving subject-wise
adaptation. In the proposed method, the local discriminators
are incorporated to resolve local distribution misalignments and
efficiently transfer knowledge to a target domain.

C. Network Implementation

We show more detailed implementations of the network. In
Fig. 3, the discriminators depicted as orange, green, and blue bars
are composed of the branches of multiple fully connected layers
to output a logit for domain prediction. The global discriminator
is composed of a single branch, while the local discriminators
have multiple branches. The number of branches for the local
discriminators depends on the number of stages and subjects
that constitute the domain. Specifically, there are five branches
for the stage discriminator reflecting the number of sleep stages.
The number of branches for the subject discriminator differs by
the number of individuals or their groups in the source domain.
In the experiment, we designed five subject discriminators based
on the number of subsets from the database used as the source
domain.

IV. TRAINING

It is not a trivial problem to train the proposed sleep staging
network because the conventional adversarial learning approach
is not applicable to our problem. We present several loss func-
tions for training and optimizations in this section.

A. Loss Function

1) Classification Loss Function: We use a classification loss
function to perform sleep staging. The overall classification loss
function is given as

Lc = Ls
c + αLt

c

=
∑

xs
i∈XS

H(ypredi , ysi ) + α
∑

xt
j∈XT

Ĥ(ypredj ), (4)

where Ls
c is the cross-entropy loss function for a source sample.

xs
i and ysi are an input sample and the corresponding label,

respectively. H(·, ·) represents the cross-entropy loss function,
and ypredi is the softmax output of C. Lt

c is the conditional cross-
entropy loss function for a target sample [31], [35], computed
by measuring a confidence to the prediction itself due to the lack
of a label. Ĥ(ptj) = −

∑r
k=1 p

t
j(k) log p

t
j(k). p

t
j(k) is the kth

element of ptj , which is the probability that xt
j belongs to the kth

class. α is an adaptive hyper parameter to balance the staging
loss in the target. We will explain how α is determined later.

2) Discrimination Loss Functions: The discrimination loss
in (1) is defined as the sum of the domain discrimination loss
function Ldom, the subject-discrimination loss function Lsub

l

used for a sample belonging to the lth subject, and the stage-
discrimination loss function Lstg

k used for a sample belonging
to the kth stage, given as

Ld = Ldom + Lstg + Lsub

= Ldom +

b∑
l=1

Lsub
l +

r∑
k=1

Lstg
k , (5)

where b and r are the number of subjects and stages, respectively.
Ldom is defined as

Ldom =
∑

xi∈XS∪XT

H(ddomi , di), (6)

where ddomi is an output fromDdom(E(xi)), and di is set to 1 if
xi ∈ XS and 0 otherwise.
Lstg
k is defined as

Lstg
k =

∑
xi∈XS∪XT

pkiH(dstgki , di), (7)

wheredstgki is an output fromDstg
k (E(xi)) andk ∈ {1, 2, . . . , 5}

is an index of the sleep stage. pki is the probability thatxi belongs
to the kth class. For xi ∈ XS , pki is set to 1 if yi is equal to k
and 0 otherwise. For xi ∈ XT , pki is computed from the output
logit of C owing to the lack of a label.
Lsub
l is defined as

Lsub
l =

∑
xi∈XS∪XT

pliH(dsubli , di), (8)

where dsubli is an output from Dsub
l (E(xi)), l ∈ {1, 2, . . . , b} is

an index of the lth subject discriminator, and pli is the probability
that xi belongs to the lth subject. The subject is revealed with a
label zi along with xi ∈ XS . pli is set to 1 if xi ∈ XS belongs to
the lth subject (i.e., zi = l) and 0 otherwise. For xi ∈ XT , pli is
set to 1

b . The number of parameters in Dsub
l increases with the
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number of subjects. This can be a burden during training, so we
assign a discriminator to a group of subjects instead of all the
individuals.

3) Gradient-Synchronization Loss Function: The training
converges slow if each gradient computed from individual dis-
criminators exhibits a different direction. Therefore, we use
an optimization scheme to make both the direction and the
slope of each gradient be consistent. Specifically, we use a
gradient-synchronization loss to align gradients of global and
local discriminators as a regularization, motivated by [35].
Lsyn
sub∼stg is used to align the gradients for learning a stage-

discriminator and a subject-discriminator given as

Lsyn
sub∼stg =

∣∣∣∣
∑

xi∈XS∪XT

∥∥∥∥ ∂Lsub
l

∂E(xi)

∥∥∥∥
2

−
∑

k∈subl

∑
xi∈XS∪XT

∥∥∥∥∥
∂Lstg

k

∂E(xi)

∥∥∥∥∥
2

∣∣∣∣∣ , (9)

where the first term computes an amount of the gradient in the lth

subject-discriminator, and the second term computes the sum of
the gradients of all the stage-discriminators of the lth subjects.

Lsyn
dom∼sub is used to align the gradients of a domain-

discriminator and a subject-discriminator, given as

Lsyn
dom∼sub =

∣∣∣∣
∑

xi∈XS∪XT

∥∥∥∥ ∂Ldom

∂E(xi))

∥∥∥∥
2

−
∑b

l=1

∑
xi∈XS∪XT

∥∥∥∥ ∂Lsub
l

∂E(xi)

∥∥∥∥
2

∣∣∣∣ , (10)

where the first term is the sum of gradients of the domain
discriminator, and the second term is the sum of gradients for
all subject discriminators.

After all, the gradient-synchronization loss is given as

Lsyn =
1

b

b∑
l=1

Lsyn
sub∼stg + Lsyn

dom∼sub. (11)

The direction and slope of all gradient descents can be syn-
chronized using this regularizing term.

B. Overall Objective

We have defined the objective functions in (2) and (3). The
overall optimization process for each step is explained to show
the updates of learning parameters, denoted as θ with subscripts
indicating their relevant modules.

First, the stage classifier C is optimized to minimize the
classification loss in (2) with a learning rate η

θC ← θC − η
∂Lc

∂θC
. (12)

When E is given, the discriminators D =
{Ddom,Dsub,Dstg} are optimized by minimizing the loss
combining the discrimination loss in (1) and the synchronization
loss in (11) as below:

min
D

Ld + βLsyn, (13)

where β is a hyperparameter. It is shown later how β is deter-
mined.

Then, relevant parameters of the discriminators are updated
as follows:

θDdom ← θDdom − η
∂(Ldom + βLsyn)

∂θDdom

,

θDsub ← θDsub − η
∂(Lsub + βLsyn)

∂θDsub

,

θDstg ← θDstg − η
∂(Lstg + βLsyn)

∂θDstg

. (14)

On the other hand, when D is given, E are optimized to
make a feature to be discriminative and domain invariant at
the same time. In order to train the domain-invariant feature,
the gradients of the discriminators are reversed by the gradient
reversal layer [26], [33], thus allowing the minimax game be-
tween the stage classifier and the discriminators defined in (3).
Mathematically, the gradient reversal is performed in by taking
negative of the discrimination losses. This can be achieved by
minimizing the classification loss and simultaneously confusing
the discriminators as below:

min
E

Lc + βLsyn − Ld. (15)

Then its parameters are updated as follows:

θE ← θE − η

(
∂(Lc + βLsyn)

∂θC
· ∂θC
∂θE
− ∂Ld

∂θD
· ∂θD
∂θE

)
.

(16)

C. Adaptive Hyper Parameter Tuning

In (4) and (13), α and β are used as weighting factors of
different loss functions. We observe that the network tends
to be overfitted to the source when the hyperparameters are
inappropriately determined. This problem occurs because the
conditional cross-entropy loss cannot reduce an error during
backpropagation owing to the lack of labels. To avoid a trial and
an error manner, we adjust the parameters dynamically during
training. We examine the ratio between a source loss and a
target loss for each training epoch and update the parameters
as follows:

α← Ls
c

Lt
c

· 1
p

β ← Ldis

Lsyn
· 1
p
, (17)

where Ls
c and Lt

c are the cross-entropy losses in the source
and target, respectively. Ldis = mean(Ldom, Lsub, Lstg) is the
arithmetic mean between all discrimination losses.p is a constant
parameter used to adjust the ratio.

The ratios of the loss terms usually fluctuate rapidly in the
early stage of training, so it would be inefficient to update
the hyperparameters during every iteration. Instead, we update
the hyperparameters once every K epochs. Specifically, we
compute the average of the ratios during K epochs and update
the parameters. We show these procedures in Algorithm 1 with
a maximum training epoch denoted as L.
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V. EXPERIMENTS

A. Experimental Settings

1) Source-Domain Database: We use the Montreal Archive
of Sleep Studies (MASS) [23] database as the source domain
because this dataset contains a large number of biometric signals
obtained from different sleep laboratories. MASS consists of
all-night sleep data for 97 men and 103 women whose ages
range from 18 to 76 years. It is known that the subjects are all
healthy. Subject-specific demographic features are restricted to
access. The sleep data were constructed manually by several
sleep experts, following the AASM standards [5] to annotate
the SS1 and SS3 subsets and the R&K standards [4] to annotate
the other stages. As in [10], the annotations are converted to
W, N1, N2, N3, and REM by combining N3 and N4 in the N3
stage and neglecting MOVEMENT and UNKNOWN. The 20 s
epochs were extended to 30 s ones by padding each 5 s segment
of temporally neighboring epochs.

2) Target-Domain Database: We use the Sleep-EDF
database [42], [43] and Sleep-EDF-st database [42], [43] for
the target domain. The numbers of subjects were 20 and 22,
respectively. We apply the leave-one-out cross-validation (CV)
for Sleep-EDF and 11-fold CV for Sleep-EDF-st as in [10],
[27]. The recordings are trimmed from light-off time to light-on
time both in the databases as in [27]. The main difference in the
data is the health conditions of subjects. We show more details
about the databases below.

Sleep-EDF database includes 20 subjects ranging from 25 to
34 years. The PSG data were recorded over two nights, except
for one subject whose data is for only one night. Each epoch has
eight categories {W, N1, N2, N3, N4, REM, MOVEMENT, UN-
KNOWN}, in accordance with the R&K standard [4]. As in [10],
we merged the N3 and N4 stages into N3; the MOVEMENT and
UNKNOWN categories were excluded in the experiments.

Sleep-EDF-st database is a subset of the Sleep-EDF ex-
panded database [42], [43], including 22 Caucasian subjects
ranging from 18 to 79 years. It is known that the subjects had
mild difficulty falling asleep.

TABLE I
INPUT CHANNELS OF PSG MONTAGES

3) PSG Montages: We conducted experiments using various
PSG montages. The test performance is presented with using the
single channel data (i.e. EEG→EEG and EOG→EOG) and the
multi-channel data (i.e. EEG · EOG·EMG→ EEG· EOG·EMG,
EEG · EOG→ EEG · EOG). We summarized the input channels
in Table I. EMG recordings are not available in the Sleep-EDF
database.

4) Sleep-Staging Network: We used various baseline net-
works such as DeepSleepNet [10] and SeqSleepNet [11] to
verify the effectiveness of the proposed method.

� DeepSleepNet [10] takes a single epoch for an input
sleep data. A feature extractor provides time-independent
features in a single epoch. The original training scheme
explained in [10] is applied.

� SeqSleepNet [11] takes a spectrogram as an input and uses
a multi-sequence classification to handle multiple epochs
and produce corresponding results from the epochs.

� DeepSleepNet+ and SeqSleepNet+ are improved ver-
sions of DeepSleepNet and SeqSleepNet, respectively,
in [27]. They also conduct multi-sequence classification.

The proposed method was deemed applicable to the models
because it is largely model agnostic. In our implementations, for
all the discriminators, we use two fully connected layers with
512 neurons and 64 neurons for DeepSleepNet and SeqSleepnet,
respectively. We use a softmax layer to determine whether an
input is from the source or target domain. When the proposed
method is applied to a multi-sequence classification framework,
it produces the same number of domain predictions as the input
epochs. In the original SeqSleepNet [11], DeepSleepNet+ and
SeqSleepNet+ [27], it handles 20 epochs for a prediction result.
However, in our implementation, we reduced the number to 5
because the models require additional parameters for domain
discriminators. The models are retrained due to these changes.

The networks are trained with one global domain discrimi-
nator and five stage discriminators. We use a subject discrim-
inator used for each of subject groups. We use five subject
discriminators in the implementation because there are five
subject groups in the MASS database, in which the subject
groups are configured with different acquisition devices, filtering
methods, etc. The configurations can reflect subject-wise domain
discrepancies.

5) Metrics: The performance is evaluated using overall
accuracy, a macro F1-score, and Cohen’s kappa (κ) as the
metrics, calculated as below:

ACC =

∑
c∈CS TPc

N
(18)

MF1 =

∑
c∈CS F1c

5
, (19)
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TABLE II
STAGING PERFORMANCE ON THE SOURCE DOMAIN

where TPc and F1c are the true positive and per-class F1 score
of class c ∈ CS , respectively, and N is the total number of test
samples.
κ [44] is a statistical measure of the interrater agreement (IRA)

level calculated as

κ =

∑
c∈CS pcc −

∑
c∈CS pc+p+c

1−∑
c∈CS pc+p+c

=
pa − pe
1− pe

, (20)

where pcc represents the percentage of epochs classified as cat-
egory c by the network and the annotated label simultaneously,
and pc+ and p+c represent the percentages of epochs classified
as category c by the network and annotated label, respectively.

B. Experimental Results

1) Performance on Source Domain: Table II presents the test
staging performance of [10] and [11] on the MASS database
as source domain. The models are trained from scratch, using
180 subjects for training, 10 subjects for validation, and 10
subjects for testing in the MASS database. The previous works
have reported the similar performance [11], [27], and the results
verify the applicability of the proposed method in different
PSG montages. In the results, SeqSleepNet slightly outperforms
DeepSleepNet in various input PSG montages, by taking an
advantage of a multi-sequence prediction.

2) Performance on Target Domain: Table III presents the test
staging performance on target domain. We configure compared
learning schemes or conditions to evaluate the performance of
the proposed method as follows.

Scratch learning (SC) refers to a scenario under a condition
that a network is trained and tested using disjoint samples
belonging to the same target domain. It does not use a transfer
learning but needs ground truth target data during training. A
network can exploit the training and testing samples chosen from
the same database.

Direct transfer (DT) refers to a scenario under that a network
is trained in the source and straightforwardly tested in the target.
This condition would be adversarial to a network owing to
different characteristics of the training and testing samples.

Fine tuning (FT) uses labeled training samples obtained from
both source and target domains so can exploit a larger number of
samples during transfer learning. It cannot perform the transfer
learning properly if there are no ground truth data in target
domain, which falls back to DT. We present the results of [27]
as the state-of-the-art supervision.

The proposed method is compared with these three settings
as shown in Table III. “CD” and “US” describe cross-domain
knowledge transfer and unsupervised learning settings. In our
work, the performance is expected to be close to those in the

SC and FT and higher than DT although the ground truth is
unknown during the training. The number of samples in the
source domain is larger than that in the target domain. Thus, we
use the training and testing samples differently. In Table III, the
specific numbers of subjects are denoted by Ns and Nt, used
for training in source domain (“S”) and target domain (“T”),
respectively. Nu

t represents the unlabeled training data. Ns is
200 for the FT as in [27]. For the other configurations,Ns is 180.
Nt is 19 and 20 for Sleep-EDF and Sleep-EDF-st, respectively.
Nu

t is equal toNt. We use the same test sets for fair comparisons.
In the Sleep-EDF dataset, the performances of DT is de-

graded 6–17.1% (10.8% on average) and 3.4–14.4% (8.1%
on average) in overall accuracy (Acc.) compared to those of
SC for DeepSleepNet and SeqSleepNet. In the Sleep-EDF-st
dataset, the performance drop reduces to 0.3–8.3% (3.2% on
average) and 2.2–12.8% (4.6% on average) in overall accuracy
for DeepSleepNet and SeqSleepNet, respectively. In the results,
SC provides a superior performance to DT in various settings.
In fact, SC presents the best expectation of a network because a
network can exploit the training and testing samples chosen from
the same database [45]. In contrast, DT would be adversarial to
a network owing to different characteristics of the training and
testing samples. Some results such as a single EEG channel of
Sleep-EDF-st dataset display improved performance of DT over
SC. We think the small number of training samples would affect
the performance. Nt is significantly smaller than Ns as shown
in Table III.

The proposed method attempts to reduce the domain discrep-
ancies and efficiently recovers the performance drop of DT even
though the knowledge transfer is conducted using unlabeled
samples in target domain. For DeepSleepNet, as compared to
DT, the performances of the proposed method are improved
approximately 6.5%, 8.8%, and 0.08 in terms of Acc., MF1,
and κ in the Sleep-EDF dataset. We observe similar results in
SeqSleepNet, in which the improved performances are 2.8%,
1.8%, and 0.04 on average. The performance difference de-
creases because the performance differences between DT and SC
are smaller in SeqSleepNet. For DeepSleepNet+ and SeqSleep-
Net+, the accuracies of the proposed method are improved
approximately 7.4% and 1.9%, respectively, as compared to DT.
We also examine the results in the Sleep-EDF-st dataset. For
DeepSleepNet and SeqSleepNet, the accuracies of the proposed
method are improved approximately 4.6% and 4.7%, respec-
tively, as compared to DT. We observe similar behaviors in the
other baseline models. In the accuracies, we observe that the
best record is 10.4% improvement as compared to DT, which
is applied to a single EOG channel data of Sleep-EDF using
DeepSleepNet+. We observe the proposed method enhances the
performance over DT in almost all of the cases, but, for a single
EOG channel data of Sleep-EDF using SeqSleepNet+, there is
a slight loss. However, it is noted that the number of training
samples in DT are significantly larger than that of the proposed
method.

In FT [27], the baseline models are finetuned to improve
performance in target domain, by using labeled samples as many
asNs +Nt. DeepSleepNet+ and SeqSleepNet+ are designed for
transfer learning, so they achieve the best performance among
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TABLE III
QUANTITATIVE RESULTS OF THE PROPOSED DOMAIN ADAPTATION (PROP) USING VARIOUS METRICS AS COMPARED WITH SC, DT, AND

FT [27] AS THE STATE-OF-THE-ART SUPERVISION. “CD” AND “US” REFER TO CROSS-DOMAIN KNOWLEDGE TRANSFER AND
UNSUPERVISED LEARNING SETTINGS, RESPECTIVELY

compared baseline models. To be specific, for DeepSleepNet+,
as compared to DT, the performances of the FT are improved
approximately 15.7%, 19.8%, and 0.21 in terms of Acc., MF1,
and κ in the Sleep-EDF dataset. For SeqSleepNet+, the perfor-
mance improvements are 10.2%, 12.3%, and 0.15 on average.
On contrary, DeepSleepNet and SeqSleepNet do not take an
advantage of fine-tuning as much. Although the performance of
the FT is largely better than the proposed method, the FT needs
labeled samples in target domain. However, they are usually un-
available in the real world whereas the proposed method relaxes
the assumption. The performance of the FT drops to DT when
there is no labeled target samples. Furthermore, the number
of training samples in source domain is mattered to provide
reliable performance in the FT. In comparisons, the proposed
method uses Nt labeled samples. We exhibit more results on the
performance change of the FT with Ns in Section V-C5.

We show more comprehensive results for the proposed
method, the SC, and the DT in Fig. 4. Each graph represents
the values of overall accuracy, MF1 scores, Cohen’s kappa,
precision, and recall values of the tested models. The precision
and recall values are computed as the means of the per-class
precisions and recalls. It is clearly seen in DeepSleepNet that
the performance of the proposed algorithm approximates to that
of the SC. In SeqSleepNet, there are small margins between
the SC and DT. Nevertheless, the performance of the proposed
algorithm is close to that of the SC.

Moreover, the performance of the proposed method is com-
pared with the state-of-the-art unsupervised DA scheme [39]

Fig. 4. Illustration of the quantitative results in the different baseline
models and datasets. Best viewed in color.

for sleep-EDF as target. [39] uses multiple channel discrimi-
nators for input data channels, so we adopt two channel-wise
discriminators for EEG · EOG and one discriminator for an
EEG input. Other training schemes were performed same as
described in [39]. Table IV displays the enhanced performance
(Δ) of the proposed method as compared to [39] in the same
training conditions. Nt and Nu

t are the same, too. The proposed
method outperforms [39] approximately 4.8%, 3.9%, and 0.05
on average in terms of Acc., MF1, and κ for multi-channel EEG
· EOG input data and 8.5%, 7.8% and 0.11 for a single EEG
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TABLE IV
PERFORMANCE COMPARISONS WITH [39]. THE ENHANCED PERFORMANCE

OF THE PROPOSED METHOD IS REMARKED WITH Δ

Fig. 5. Training curves of a staging loss function and three discrimina-
tion loss functions for (a) source samples and (b) target samples.

input data. The results demonstrate that the proposed method
exploits better global and local domain discriminators to reflect
the intrinsic structures of sleep data.

C. Discussion

In this subsections, all results are presented using DeepSleep-
Net and a single EEG channel data of the Sleep-EDF.

1) Adversarial Training Analysis: We attempt to justify the
performance of the results by showing the intermediate training
results. Fig. 5 shows the loss curves of the DeepSleepNet for
validation of fold 0 during training. Practically, in our training,
we first use source samples and then input the remaining samples
from the target. Fig. 5a and 5b are plotted when training the
source and target samples, respectively. Losses depicted in Fig. 5
represent the means of losses calculated from all batches at each
training epoch.

Our model is trained with reducing the staging losses both in
the source and target. The staging loss in source decreases sub-
stantially because the parameters are updated through standard
backpropagation. The staging loss in the target is relatively stable
because it is computed from the confidence of model prediction
using conditional cross-entropy in (4). It is noted that the three
losses of a domain discriminator, subject discriminator, and
stage discriminator decrease in the early learning time, while the
discrimination losses remain constant after a certain point. This
phenomenon shows that a feature learns the dominant-invariant
property by fooling the discriminators. Therefore, we find that
the classifier and discriminators in the proposed method are
trained suitably.

2) Performance Analysis of Adversarial Discriminators: We
investigate the performance changes by turning on or off the local
discriminators to verify the effectiveness of the discriminators.
Table V(a) shows the specific conditions for comparisons, using

the Sleep-EDF dataset as the target domain and DeepSleep-
Net as the base model. The best performance is 80.7% when
all the discriminators are applied. However, the performance
degrades to 77.8% and 75.4% when disabling the stage- and
subject-discriminators, respectively. In particular, the subject
discriminator gives more impact to the performance. It is no-
ticed that the performance in the DT was about 73.5%. The
domain-discriminator enhances the performance from 73.5% to
75.3%. In addition, the performance is improved with the local
discriminators by fixing the misaligned local attributes.

Fig. 6 shows the results of confusion matrices when disabling
the local discriminators. From the left to the right, we display the
results of the DT, “Dom,” using only the domain discriminator,
“Dom+Sub+Stg,” using all the domain discriminators, and SC.
We observe that the diagonal elements of the matrices exhibit
increasing performance from the left to the right. “Dom” in Fig. 6
shows improved performance to DT. However, it is noted that
the performance for N1 and N3 stages is rather poor. These
results show that the overall distribution is aligned but there are
still misalignments in the stage distributions. On the other hand,
“Dom+Sub+Stg” in Fig. 6c presents the similar performance to
that in the SC in Fig. 6d.

3) Performance Analysis With the Number of Subject Dis-
criminators: We examine the performance with the number of
subject discriminators b, which is originally determined to 5 ac-
cording to the research protocols regarding different acquisition
conditions in MASS dataset. We change the value to multiples of
5 so that the subjects belonging to the same subsets are still in the
same groups. Table V(b) presents the staging performance with
different number of subject discriminators. When we increase
b to 40, the overall performance degrades rapidly. We found
the number of training parameters also increased significantly,
and it was difficult to avoid over-fitting problems. We observe
that the number of subject discriminators needs to be carefully
determined, considering the model parameters and the training
data.

4) Performance Analysis of Hyper Parameter Adjustments:
Table V(c) illustrates the performances with different combina-
tions of p in (17) and K as an update cycle. The combinations
were chosen within p = {2, 3, 4} and K = {1, 3, 5, 7} to verify
the impacts on training. The best performance was 80.7% for
Acc. when p and K were 3. This result implies that the unstable
ratio may affect the values of the hyperparameters frequently
and degrades performance.

5) Performance Analysis of Sample Balance Between Do-
mains: We reveal that the numbers of source and target samples
involved in the training can significantly affect the performance.
On the one hand, a network would choose more source samples
for training because these samples are usually greater than those
of the target samples, and a network is exposed more to source
samples during random selection. On the other hand, a network
can adopt more target samples because it likely improves the
performance in the corresponding domain. However, in our
experimental results, none of the strategies are the right choice.
In Table V(d), r is defined as the ratio between the numbers of
source to target samples chosen during training. The proposed
method provides the best performance of around 80.7% when
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TABLE V
DIFFERENT ABLATION STUDIES ON (A): EFFECTS OF THE LOCAL DISCRIMINATORS, (B): EFFECTS OF THE NUMBER OF SUBJECT DISCRIMINATORS,

(C): ADAPTIVE HYPERPARAMETER ADJUSTMENTS, (D): EFFECTS OF THE BALANCE OF DATA SAMPLES FROM DIFFERENT DOMAINS IN PROP (LEFT)
AND FT (RIGHT), RESPECTIVELY. r AND s ARE THE RATIOS

Fig. 6. Confusion matrix results when different combination of the discriminator is used. (a): DT, (b): PROP using only domain discriminator,
(c): PROP with domain, subject and stage discriminators, (d): SC. Larger diagonal components of the matrix mean good staging performance.
From (a) to (c), the matrix gets resembling (d) which is the upper bound.

the numbers of samples are the same. However, the performance
drops by around 3–6% when the ratio is not equal to 1. These
results demonstrate that if the number of samples in either
domain is excessive, the network can be too fitted to one domain
and limited for the other domain. For instance, even though
the target samples are more available, the limited knowledge
transfer from a small number of source samples can degrade
performance. In Table V(d), we also change the ratio s = Ns

Nt

in FT [27] and present the results when Nt is fixed to 19.
We observe the accuracies are degraded when Ns is smaller.
It indicates that the performance of the FT highly depends on
the number of source samples.

6) Time Complexity: For training time, the proposed method
takes 0.79 ms to train a single sleep epoch of the Sleep-EDF on
average, when using DeepSleepNet. In comparison, the original
DeepSleepNet takes 0.72 ms. The reason is the additional dis-
criminators. However, the inference time of a single sleep epoch
is almost the same of 0.27 ms because the discriminators are not
involved during testing.

VI. CONCLUSION

We proposed an unsupervised domain adaptation to effec-
tively utilize DL-based sleep staging networks on small cohorts
of sleep data. We used several discriminators to consider not
only the global alignment but also local alignments to maintain
the intrinsic structures of sleep data. The experimental results
demonstrated that the proposed method could achieve similar
performance to supervised learning cases even though the net-
work does not need any labels in the target domain. We expect
the usefulness of the proposed method in wider scenarios where

data acquisition is more difficult than the standard PSG, such
as data from wearable devices. Demographic features will be
also useful for subject grouping. Further studies are thus needed
to prove the validity of proposed method in such situations.
Furthermore, the usefulness of this method can extend to other
clinical applications using biosignal processing, considering that
clinical data acquisition is relatively tough. More studies are
needed to replicate this method in other clinical applications to
validate its utility.
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