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ABSTRACT

Compression artifact removal is imperative for more visually pleasing contents after image and video compression.
Recent works on compression artifact reduction network (CARN) assume that the same or similar quality of
images would be employed for both training and testing, and, accordingly, a model needs a quality factor as a prior
to accomplish the task successfully. However, the possible discrepancy will degrade performance substantially
in a target if the model confronts a different level of distortion from the training phase. To solve the problem,
we propose a novel training scheme of CARN to take an advantage of domain adaptation (DA). Specifically, we
assign an image encoded with a different quality factor as a different domain and train a CARN using DA to
perform robustly in another domain of a different level of distortion. Experimental results demonstrate that the
proposed method achieves superior performance on DIV2K, BSD68, and Set12.
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1. INTRODUCTION

Nowadays, visual content is ubiquitous in our daily life. Image and video dominate internet streaming services
and social media, and content providers are actively working to produce high-quality footage. However, while
the original content is created and edited without visual artifacts in the production phase, undesired compression
artifacts such as blocky and ringing artifacts are unavoidable after compression and transmission. In this regard,
in recent years, image and video enhancement techniques have been widely used for quality improvement to
obtain more visually pleasing results through post-processing.1–6

Compression artifacts reduction network (CARN) is an enabling technique based on a deep neural network
(DNN) to reduce the unwanted artifacts after compression.1–5 In the previous studies, the CARNs were trained
under the assumption that similar quality of images was used during both training and testing. However, the
performance of a pre-trained model was substantially degraded in a target application when the model needed to
handle a different range of distortion or quality factors (QFs) which was unseen during training. Unfortunately,
it is usually unknown how different the qualities between the training samples and testing samples are during the
post-processing, and such the discrepancies incur the loss. Hence, quality-adaptive artifact reduction is required.

Fig. 1 shows our motivation in which a CARN model differently conducts quantization noise reduction in
different training QFs. The residual images are obtained by subtracting the reconstructed images from the
ground-truth. Fig. 1b displays the compression error of the JPEG compressed image with QF = 10. Fig. 1d,
and 1e display the residual images when the model is trained with QF = 10 and 70, respectively. It is clearly
observed that the model provides degraded performance when the testing QF is different with the training QF.
In a näıve approach to solve the problem, a model may use a large training set of image samples including all the
possible QFs as shown in Fig. 1f. However, it is challenging for a model to adapt QF of interest during training,
and the training time increases dramatically. In contrast, Fig. 1c is the residual of the image reconstructed by
our method, which shows the most visually satisfactory result and has the highest numerical gain. Although the
training and testing QFs are different, the proposed method alleviates blocky and ringing artifacts from Fig. 1b
without compromising brightness change information of the background.
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(a) Original (b) JPEG (QF = 10): 23.7dB (c) Ours (Train QF = 70): 24.1dB

(d) CARN (Train QF = 10): 24.1dB (e) CARN (Train QF = 70): 23.9dB (f) CARN (Train QF = 10, 70): 24.1dB

Figure 1: Visualization of the residuals between the reconstructed images of all scenarios and the ground-truth image.
(Tested on QF = 10) For better visualization, we take logarithm of the absolute value of the residuals added by 1.
log(| Irecon − Igt | +1). We present a quantitative result in a format of “method: PSNR (dB)” for (b)-(f). We use RDN
as CARN backbone. Best viewed in a digital monitor.

In this paper, we propose a novel training framework of a CARN using domain adaptation (DA) to fill the gap
between training and testing QFs. To the best of authors’ knowledge, this is the first study to apply the DA to a
CARN for adapting a different level of distortion. In our new perspective, images encoded with different QFs are
considered as different domains. More precisely, we take advantage of DA by transferring knowledge from source
to target,7–9 so that a feature extractor generates more domain-invariant features. Hence, by applying the DA
to our training scheme, we enable a CARN to efficiently handle unseen quality of images in a target application,
although feature extractor and denoiser of the network has been pre-trained on the different distortion level
ahead. The proposed method does not require ground-truth to the target image samples but a domain label to
indicate whether a sample is generated from the same QF or not. Hence, the denoiser of the proposed network
is trained in an unsupervised manner on the target side.

2. RELATED WORKS

2.1 Compression Artifact Reduction Networks (CARN)

The CARNs are actively used for post-processing1–5 and in-loop filters.10–12 Recently, there have been several
studies to develop CARNs. Motivated by deep convolutional neural network (CNN) for image super-resolution,13

Dong et al. proposed an artifact reduction convolutional neural network (ARCNN) to reduce compression
artifacts.1 Later, various CARN architectures have been developed both on a pixel domain and a transform
domain such as a sinogram,14 a DCT domain,15 and multiple domains.16 Recently, there have been several
studies on quality adaptive CARNs. Kim et al.17 proposed a quality-adaptive artifacts removal network based
on a gating scheme. Ehrlich M. et al.18 used a quantization matrix of JPEG to adapt model parameters to a
different level of distortion. Although these studies could reduce a wider range of distortion using a single model,
they needed to estimate quality information in both training and testing, which challenges end-to-end learning.
In contrast, our method does not require any quality information as a prior during testing.
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2.2 Domain Adaptation (DA)

The DA is originally developed to shift a feature space from source to target by reducing the discrepancy
between two domains – source and target. There have been conventional DA studies such as Maximum Mean
Discrepancy (MMD)7 to calculate a distance between two data distributions and produce features using a kernel-
based statistical metric. Researchers have actively conducted DNN-based DA studies in past years.8,9, 19–22

Ganin et al.8 introduced a domain classifier to discriminate a source and a target domain and devised Gradient
Reversal Layer (GRL) to train the network. Adversarial learning was used with a standard backpropagation
method. Several works attempted to challenge the adaptation when there are only a few available samples in the
target.9,19 The studies are applied to various computer vision and image processing techniques such as image
classification,9 face recognition,19 semantic segmentation,20 and multi-task.21 However, there are only few works
to exploit DA for image enhancement and denoising. In Ref. 22, real-world depth data was enhanced by plentiful
synthetic data using DA, alleviating the domain discrepancy between synthetic and real data. However, it focuses
on adjusting from the synthetic source domain to real-world target domain due to the lack of a real dataset in
the target domain. This work introduces DA into the denoising task of Time-of-Flight depth denoising but still
does not address noise levels within the data.

3. PROPOSED METHOD

3.1 Problem Formulation and Objective

We focus on reducing compression artifacts using a DA method so that a single CARN model can handle different
qualities of images and provide robust performance for enhancement. We present a training method to tune a
CARN to be efficiently applied to test images with a different distortion level from the original training samples.
In our problem formulation, we assign two different distortion levels to source and target domains. For instance,
a high-quality (HQ) image sample as target domain goes through a CARN that has been trained using a set of
low-quality (LQ) images as the source domain, and vice versa.

Our CARN training framework consists of three components: a feature extractor F , a denoiser D, and a
quality discriminator Q. The F extracts features from the source or target input images, while source and target
share weights through one common F . The D is learned by receiving features extracted only from the source
images. At this point, the target is not directly involved in training D, and, therefore, the denoiser on the target
side is trained in an unsupervised manner Meanwhile, the Q is aimed at fooling F . The F is initialized with a
pre-trained weight that extracts the features for the source images. As Q is added to the network, F and Q play
a minimax game on discriminating source and target and extracting features from F in order for D to function
properly. The inputs of the network xi can be both source quality images xs ∈ S and target counterparts xt ∈ T .
It is noteworthy that D is trained by images with the source quality only. The corresponding ground-truth of
input source images is denoted by ys, and quality labels which are source or target are represented by qi (i = 1, 2).
Our goal is to adaptively remove compression artifacts on images with a distortion level corresponding to the
quality of the target domain in the inference phase where Q is excluded, and our objective function is as follows:

min
θF ,θD

max
θQ

LD,s − λ · LQ, (1)

which will be further explained in parameter optimization.

3.2 Network Architecture and Loss Function

We opt to use the state-of-the-art image restoration model Residual Dense Network2 (RDN) as backbone. The
backbone is split into feature extractor and denoiser for our methods. Specifically, the first 2 convolutional layers
of RDN and the rest are used as feature extractor and denoiser, respectively. Then, quality discriminator is
connected with the feature extractor. It is composed of 3 fully connected layers, and two of which are followed
by rectified linear unit (ReLU). We used RDN as a backbone, however, the D can be chosen from arbitrary
CARNs and they are also used for inference. In contrast, the quality discriminator Q is included during training
to conduct DA for which the F and the Q play a minimax game on the discrimination loss. In this manner, even
though a CARN is pre-trained using images coded with a different quality factor, the model can be adapted to
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Figure 2: An overview of the proposed network training scheme for compression noise removal.

different level of distortion in a target application. We use two loss terms for training, which are denoising loss
LD,s and quality-discrimination loss LQ as follow:

LD,s =
1

Ns

H∑
h=1

W∑
w=1

C∑
c=1

∣∣∣y(h,w,c)s −D
(
F
(
x(h,w,c)s

))∣∣∣ , (2)

LQ =
1

Ns +Nt

∑
xi∈S∪T

2∑
i=1

qi logQ(F(xi)), (3)

where input images are in size H ×W × C and Ns and Nt are the number of source and target quality images,
respectively. The denoising loss LD,s is defined as a pixel-level difference between the original image and a
distorted image in the source domain only. The quality-discrimination loss LQ is defined as a cross-entropy loss
to predict the quality of an image. We use the conventional stochastic gradient descent (SGD) method while the
quality-discrimination loss is reversed using a gradient reversal layer.8 In summary, the overall loss is defined as
in Equation (4):

L = min
θF ,θD

max
θQ

LD,s − λ · LQ (4)

where λ is a positive hyper-parameter that adjusts the trade-off between the denoising loss and the quality-
discrimination loss. θF , θD and θQ are parameters of F , D, and Q, respectively. These parameters are updated
as follows:

θD ← θD − η ·
∂LD,s
∂θD

, (5)

θQ ← θQ − η · λ ·
∂LQ
∂θQ

, (6)

θF ← θF − η
(
∂LD,s
∂θD

· ∂θD
∂θF

− λ · ∂LQ
∂θQ

· ∂θQ
∂θF

)
, (7)
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where η denotes a learning rate. Implementation details are covered later in the Experiments section. The Q
reduces the loss in the feed forward process in the direction of minimizing LQ. In backpropagation, the gradients
of the quality discriminator, ∂LQ/∂θQ, are updated in a standard backpropagation manner in Q. On the other
hand, it reversed negatively while they pass through the GRL. In other words, they are propagated F so that
the feature extractor is trained in an adversarial way against LQ.

4. EXPERIMENTS

4.1 Datasets and Evaluation Metrics

For training, we employ DIV2K23 train images. DIV2K is released for super-resolution (SR) and consists of 800
train images and 100 validation images. Since DIV2K is in a 2K resolution that maintains high quality even after
compression, we reduced the resolution by a quarter to let image qualities be distinguishable when compressed.
These resized original images are used as ground-truth. Then, we obtained the corresponding compressed dataset
with JPEG image compression. Here, we create two compressed image sets of HQ and LQ using 70 and 10 QFs
in the codec, respectively. We train the CARN with HQ and LQ as source and target, and vice versa. Since 70
and 10 QFs can lead to significantly different network parameters which are practically incompatible, this case
(HQ → LQ) and its opposite case (LQ → HQ) are the most disadvantageous scenario for DA.

For evaluation, we use a DIV2K validation set, Set12,3 and BSD6824 to verify the applicability of the proposed
method in different datasets. It is noteworthy that the data of Set12 and BSD68 are only used for test. All
testing images are compressed in the same manner used for training set. We examine performance improvements
in terms of three metrics: peak signal-to-noise ratio (PSNR), block-sensitive PSNR25 (PSNR-B) and structural
similarity26 (SSIM).

4.2 Implementation Details

The proposed network is trained with randomly cropped 64 × 64 patches. Data augmentation is performed on
training images, which includes random rotations of 90◦, 180◦, and 270◦ and flipping horizontally and vertically.
The feature extractor and denoiser are pre-trained using the source quality. The parameters of the network are
optimized using Adam27 optimizer, and the learning rate is initially 10−4 and varies over time (500, 800 step).

4.3 Experimental Scenarios

We define various scenarios to verify the effectiveness of our proposed DA method. “same-quality (SQ)” refers to
a scenario under the condition that a network is trained and tested using images of the same QF. This has a high
possibility to be the best expectation of a network because a network can exploit the training and testing images
of the same quality. In contrast, “different-quality (DQ)” refers to a scenario under that a network is trained
with images of one quality and straightforwardly tested for images of another quality. Furthermore,“both-quality
(BQ)” refers to a scenario under that a network is trained with images of both HQ and LQ. This is expected to
have more robust denoising power as image samples with both qualities are exploited for training.

4.4 Results

We compared the experimental results for SQ, DQ, and BQ scenarios of the vanilla RDN in Tab. 1. The SQ
scenarios provide improved results with vanilla RDN, and this phenomenon is observed both in QF=10 and 70.
Meanwhile, the DQ scenarios have performance drop due to the discrepancies of training and testing QFs. The
results showed 1.71 (dB) PSNR drop in the DQ scenario where the network is trained with QF = 70 and tested
with QF = 10, compared to the SQ scenario for QF = 10. When the model is trained with QF = 10 and
tested with QF = 70, we observe a substantial performance drop. For example, the PSNR, PSNR-B, and SSIM
gains in a Set12 dataset are approximately −3.17 (dB), −2.59 (dB), and −0.16, indicating that there is severe
performance degradation.

As clearly shown in Tab. 1, the proposed method achieves comparable or even better performance than the
SQ scenarios which is expected to be the best performance. The best result appears in intra-dataset in which
both the testing and training images are sampled from DIV2K. The results for PSNR, PSNR-B, and SSIM are
25.03 (dB), 25.01 (dB), and 0.47 for test QF = 10, and 29.26 (dB), 26.23 (dB), and 0.68 for test QF = 70, which
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Table 1: Results in PSNR/PSNR-B/SSIM. In all training scenarios, denoiser (D) takes 800 training images. In BQ
scenario, 400 images from each QF are used while training (in total 800 images). The best result is in red color, and the
second-best is in blue color. The JPEG rows indicate how compressed input images are. The result in parentheses is the
difference for JPEG compressed images. A higher value indicates a higher gain. In our experiment, our train and test
images are in grayscale and 8 bit. ⊥ refers to the inter-dataset case, i.e., the configuration of the test dataset is different
from that of the training dataset.

DatasetQuality

Factor (QF) DIV2K BSD68⊥ Set12⊥Method
Train

Scenario
Train Test PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM

JPEG - - 23.99 23.77 0.42 26.96 26.50 0.42 27.65 27.20 0.38

SQ 10 24.50(1.01) 24.98(1.21) 0.46(0.04) 28.14(1.18) 28.10(1.60) 0.46(0.04) 29.50(1.85) 29.48(2.28) 0.43(0.05)

DQ 70 24.29(0.30) 24.16(0.39) 0.44(0.02) 27.39(0.43) 27.12(0.62) 0.44(0.02) 28.24(0.59) 28.00(0.81) 0.41(0.02)
Vanilla

RDN
BQ 10, 70 24.95(0.96) 24.93(1.16) 0.46(0.04) 28.10(1.14) 28.05(1.55) 0.46(0.04) 29.44(1.78) 29.41(2.22) 0.43(0.04)

Ours HQ→LQ 70

10

25.03(1.04) 25.01(1.24) 0.47(0.04) 28.14(1.18) 28.10(1.58) 0.46(0.04) 29.52(1.87) 29.50(2.30) 0.43(0.05)

JPEG - - 28.12 27.99 0.65 34.07 33.56 0.76 35.00 34.41 0.69

SQ 70 29.15(1.03) 29.14(1.15) 0.68(0.03) 34.40(0.33) 34.35(0.80) 0.75(-0.01) 35.28(0.29) 35.25(0.83) 0.68(-0.01)

DQ 10 27.19(-0.93) 27.19(-0.80) 0.58(-0.08) 31.11(-2.96) 31.11(-2.45) 0.62(-0.13) 31.83(-3.17) 31.82(-2.59) 0.53(-0.16)
Vanilla

RDN
BQ 10, 70 29.09(0.97) 29.09(1.09) 0.68(0.02) 34.36(0.29) 34.31(0.75) 0.75(-0.01) 35.32(0.32) 35.28(0.87) 0.68(-0.01)

Ours LQ→HQ 10

70

29.26(1.14) 29.23(1.24) 0.68(0.03) 34.39(0.33) 34.23(0.68) 0.76(-0.00) 35.27(0.27) 35.17(0.75) 0.68(-0.01)

are higher than SQ and BQ. We also observe remarkable improvements for inter-dataset in which testing samples
are chosen from BSD68 and Set12, although the network has been trained using the DIV2K training dataset. In
addition, our method shows better performance gain in SSIM, a metric considering human perception, than SQ
and BQ. Although its gain is slightly below the best in PSRN and PSNR-B, it is noteworthy that the proposed
method does not use the ground-truth during the adaptation. The results imply that the CARN trained with
the proposed method becomes more robust to different levels of distortion in all the three datasets containing
various characteristics of image samples.

In Tab. 2, we examine the performance of our method as the number of target samples changes and compare
it to the BQ scenarios to analyze the effectiveness of our method with respect to the size and ratio of training
data. “NL” and “NH” refer to the number of training images of low quality and high quality, respectively. We
use QF = 10 as low quality and QF = 70 as high quality. In BQ scenarios, we fix the number of image samples
of quality different from test quality to 400 and change the number of image samples with the same quality as
test quality to 100, 400, and 800. For instance, as for test QF = 10, NH is fixed to 400, and NL is changed
to 100, 400, and 800. Both vanilla RDN and our method show better performance as the number of samples
with the same quality as the test samples increase. However, vanilla RDN requires additional training samples
and corresponding ground-truths to learn D. Meanwhile, in our method, it is notable that target samples are
solely used for DA purpose in Q and are not used to train D. Since target samples are not fed forward to D,
which accounts for most of the load in overall network training, our method takes less additional computation to
vanilla RDN. The proposed method shows comparable or better performance than BQ of vanilla RDN over all
range of ratios. In particular, our method prevails BQ when testing QF = 70 where input compressed image is
already high quality, therefore, gain increment via compression artifact reduction is difficult. From the results,
the highest gain in Our method outperforms the highest gain in BQ in respect to all metrics.

We provide qualitative results tested on QF = 10 in Fig. 3 and QF = 70 in Fig. 4. For each figure, (a)-(f) are
the sample results of DIV2K, and (g)-(l) are the sample results of BSD68. Overall, the visual outcome mostly
coincides with the numerical examination. In each figure, (a) and (g) are ground-truths of the sample images
and (b) and (h) are the JPEG compressed sample images. The rest are reconstructed images obtained from the
CARN in different training conditions. In Fig. 3 where testing QF = 10, we can see that our method Fig. 3c and
3i produce more visually pleasing results than all scenarios of the existing method Fig. 3d–3f and Fig. 3j–3l. As
for DQ, Fig. 3e and 3k lag numerical results and produce erroneous visual results simultaneously. Meanwhile, the
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Table 2: Experimental results while changing the ratio of the HQ and LQ images. NL and NH refer to the number of
image samples with quality factor 10 and 70, respectively. * refers to the target data inputted to F and Q only and is
not used to train Denoiser in a supervised manner. ⊥ refers to the inter-dataset case, i.e., the configuration of the test
dataset is different from that of the training dataset. The best result is red colored, and the second-best is blue colored.
The JPEG rows indicate how compressed input images are. In our experiment, our train and test images are in grayscale
and 8 bit.

Quality Factor (QF) Dataset

# Train DIV2K BSD68⊥ Set12⊥Method
Train

Scenario
NL NH

Train Test
PSNR PSNR-B SSIM PSNR PSNR-B SSIM PSNR PSNR-B SSIM

JPEG - - - - 23.99 23.77 0.42 26.96 26.50 0.42 27.65 27.20 0.38

100 24.93(0.94) 24.91(1.14) 0.46(0.04) 28.08(1.11) 28.03(1.53) 0.46(0.04) 29.38(1.73) 29.36(2.16) 0.43(0.04)

400 24.95(0.96) 24.93(1.16) 0.46(0.04) 28.11(1.14) 28.06(1.56) 0.46(0.04) 29.44(1.79) 29.41(2.22) 0.43(0.04)
Vanilla

RDN

BQ

(ratio)
800

400

10

and

70 25.02(1.02) 24.99(1.22) 0.46(0.04) 28.15(1.19) 28.11(1.61) 0.46(0.04) 29.50(1.85) 29.48(2.28) 0.43(0.05)

100∗ 24.92(0.93) 24.90(1.13) 0.46(0.04) 28.05(1.08) 28.00(1.50) 0.46(0.04) 29.31(1.66) 29.29(2.09) 0.43(0.04)

400∗ 24.97(0.97) 24.95(1.18) 0.46(0.04) 28.08(1.12) 28.04(1.54) 0.46(0.04) 29.45(1.80) 29.43(2.23) 0.43(0.04)Ours HQ→LQ

800∗

400 70

10

25.01(1.02) 24.99(1.22) 0.47(0.05) 28.14(1.18) 28.10(1.60) 0.47(0.05) 29.47(1.82) 29.45(2.25) 0.43(0.05)

JPEG - - - - 28.12 27.99 0.65 34.07 33.56 0.76 35.0 34.41 0.69

100 29.07(0.95) 29.07(1.07) 0.67(0.02) 34.34(0.27) 34.30(0.74) 0.75(-0.01) 35.29(0.29) 35.26(0.85) 0.68(-0.01)

400 29.09(0.97) 29.09(1.09) 0.68(0.02) 34.36(0.29) 34.32(0.76) 0.75(-0.01) 35.35(0.35) 35.31(0.89) 0.68(-0.01)
Vanilla

RDN

BQ

(ratio)
400

800

10

and

70 29.18(1.07) 29.17(1.18) 0.68(0.03) 34.38(0.31) 34.29(0.73) 0.75(-0.00) 35.30(0.30) 35.23(0.82) 0.68(-0.01)

100∗ 29.14(1.02) 29.13(1.14) 0.68(0.03) 34.43(0.36) 34.37(0.82) 0.76(-0.00) 35.29(0.29) 35.25(0.84) 0.68(-0.01)

400∗ 29.16(1.04) 29.15(1.15) 0.68(0.03) 34.41(0.34) 34.34(0.79) 0.75(-0.01) 35.33(0.33) 35.27(0.86) 0.68(-0.01)Ours LQ→HQ 400

800∗

10

70

29.25(1.14) 29.24(1.24) 0.68(0.03) 34.48(0.41) 34.37(0.82) 0.76(-0.00) 35.44(0.45) 35.37(0.95) 0.68(-0.01)

quantitative results for SQ and BQ are similar to ours. However, our method provides better perceptual visual
quality than the vanilla RDN does under SQ in Fig. 3d and 3j and under BQ in Fig. 3f and 3l. For instance, in
Fig. 3c, the texture of the squirrel fur is recovered in more detail. Moreover, the background is quite blurry in
SQ and BQ, while our method preserves the background akin to the ground-truth. Fig. 4 can be interpreted in
the same way. In Fig. 4, which is already visually gratifying since the testing QF = 70, quality improvements
among SQ in Fig. 4d and 4j, BQ in Fig. 4f and 4l, and ours in Fig. 4c and 4i are indistinguishable. Nevertheless,
given that the results in DQ are remarkably unsatisfactory, this proves that the existing CARN does not address
different QFs.

5. CONCLUSION

In conclusion, we introduced a novel training framework and perspective to consider images with different quality
factors as different domains to develop a CARN to be more robust to various scenarios in which the model needed
to encounter different quality factors in a target application. The domain adaptation was conducted by using
adversarial learning to align different domains. Compared to existing studies, the proposed method can adapt the
CARN to provide more robust results on various datasets and metrics. We also figure out that our DA method
was robust to various configurations such as the size and ratio of training samples. Further studies need to be
explored for training scheme to remove artifacts from compressed images with multi-quality or quality-agnostic
images in a single network.
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(a) GT: PSNR | PSNR-B | SSIM (b) JPEG: 23.72 | 23.51 | 0.37 (c) Ours: 24.13 | 24.10 | 0.43

(d) SQ: 24.11 | 24.08 | 0.43 (e) DQ: 23.92 | 23.80 | 0.39 (f) BQ: 24.12 | 24.10 | 0.43

(g) GT: PSNR | PSNR-B | SSIM (h) JPEG: 27.39 | 27.00 | 0.40 (i) Ours: 28.44 | 28.38 | 0.42

(j) SQ: 28.43 | 28.38 | 0.42 (k) DQ: 27.86 | 27.63 | 0.41 (l) BQ: 28.43 | 28.38 | 0.42

Figure 3: Sample images visualization corresponding to Tab. 1. (Tested on QF = 10) We provide a quantitative result
in a format of “method: PSNR(dB) | PSNR-B(dB) | SSIM” for (b)-(f) and (h)-(l). The green box is an extension of the
red box area for better visualizing results. Best viewed in a digital monitor.
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(a) GT: PSNR | PSNR-B | SSIM (b) JPEG: 27.31 | 27.25 | 0.69 (c) Ours: 27.63 | 27.62 | 0.70

(d) SQ: 27.58 | 27.58 | 0.70 (e) DQ: 26.05 | 26.05 | 0.60 (f) BQ: 27.59 | 27.59 | 0.70

(g) GT: PSNR | PSNR-B | SSIM (h) JPEG: 34.09 | 33.63 | 0.71 (i) Ours: 35.16 | 34.96 | 0.72

(j) SQ: 35.01 | 34.98 | 0.71 (k) DQ: 31.73 | 31.73 | 0.57 (l) BQ: 35.01 | 34.93 | 0.71

Figure 4: Sample images visualization corresponding to Tab. 1. (Tested on QF = 70) We provide a quantitative result
in a format of “method: PSNR(dB) | PSNR-B(dB) | SSIM” for (b)-(f) and (h)-(l). The green box is an extension of the
red box area for better visualizing results. Best viewed in a digital monitor.
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